1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
use std::any::type_name;

use num_traits::{CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, FromPrimitive, NumCast};
use vortex_dtype::half::f16;
use vortex_dtype::{match_each_native_ptype, DType, NativePType, Nullability, PType};
use vortex_error::{
    vortex_bail, vortex_err, vortex_panic, VortexError, VortexResult, VortexUnwrap,
};

use crate::pvalue::PValue;
use crate::value::ScalarValue;
use crate::{InnerScalarValue, Scalar};

#[derive(Debug, Clone, Copy)]
pub struct PrimitiveScalar<'a> {
    dtype: &'a DType,
    ptype: PType,
    pvalue: Option<PValue>,
}

impl<'a> PrimitiveScalar<'a> {
    pub fn try_new(dtype: &'a DType, value: &ScalarValue) -> VortexResult<Self> {
        let ptype = PType::try_from(dtype)?;

        // Read the serialized value into the correct PValue.
        // The serialized form may come back over the wire as e.g. any integer type.
        let pvalue = match_each_native_ptype!(ptype, |$T| {
            if let Some(pvalue) = value.as_pvalue()? {
                Some(PValue::from(<$T>::try_from(pvalue)?))
            } else {
                None
            }
        });

        Ok(Self {
            dtype,
            ptype,
            pvalue,
        })
    }

    #[inline]
    pub fn dtype(&self) -> &'a DType {
        self.dtype
    }

    #[inline]
    pub fn ptype(&self) -> PType {
        self.ptype
    }

    #[inline]
    pub fn pvalue(&self) -> Option<PValue> {
        self.pvalue
    }

    pub fn typed_value<T: NativePType + TryFrom<PValue, Error = VortexError>>(&self) -> Option<T> {
        assert_eq!(
            self.ptype,
            T::PTYPE,
            "Attempting to read {} scalar as {}",
            self.ptype,
            T::PTYPE
        );

        self.pvalue.map(|pv| pv.as_primitive::<T>().vortex_unwrap())
    }

    pub fn cast(&self, dtype: &DType) -> VortexResult<Scalar> {
        let ptype = PType::try_from(dtype)?;
        match_each_native_ptype!(ptype, |$Q| {
            match_each_native_ptype!(self.ptype(), |$T| {
                Ok(Scalar::primitive::<$Q>(
                    <$Q as NumCast>::from(self.typed_value::<$T>().expect("Invalid value"))
                        .ok_or_else(|| vortex_err!("Can't cast {} scalar {} to {}", self.ptype, self.typed_value::<$T>().expect("Invalid value"), dtype))?,
                    dtype.nullability(),
                ))
            })
        })
    }

    /// Attempt to extract the primitive value as the given type.
    /// Fails on a bad cast.
    pub fn as_<T: FromPrimitiveOrF16>(&self) -> VortexResult<Option<T>> {
        match self.pvalue {
            None => Ok(None),
            Some(pv) => Ok(Some(match pv {
                PValue::U8(v) => T::from_u8(v)
                    .ok_or_else(|| vortex_err!("Failed to cast u8 to {}", type_name::<T>())),
                PValue::U16(v) => T::from_u16(v)
                    .ok_or_else(|| vortex_err!("Failed to cast u16 to {}", type_name::<T>())),
                PValue::U32(v) => T::from_u32(v)
                    .ok_or_else(|| vortex_err!("Failed to cast u32 to {}", type_name::<T>())),
                PValue::U64(v) => T::from_u64(v)
                    .ok_or_else(|| vortex_err!("Failed to cast u64 to {}", type_name::<T>())),
                PValue::I8(v) => T::from_i8(v)
                    .ok_or_else(|| vortex_err!("Failed to cast i8 to {}", type_name::<T>())),
                PValue::I16(v) => T::from_i16(v)
                    .ok_or_else(|| vortex_err!("Failed to cast i16 to {}", type_name::<T>())),
                PValue::I32(v) => T::from_i32(v)
                    .ok_or_else(|| vortex_err!("Failed to cast i32 to {}", type_name::<T>())),
                PValue::I64(v) => T::from_i64(v)
                    .ok_or_else(|| vortex_err!("Failed to cast i64 to {}", type_name::<T>())),
                PValue::F16(v) => T::from_f16(v)
                    .ok_or_else(|| vortex_err!("Failed to cast f16 to {}", type_name::<T>())),
                PValue::F32(v) => T::from_f32(v)
                    .ok_or_else(|| vortex_err!("Failed to cast f32 to {}", type_name::<T>())),
                PValue::F64(v) => T::from_f64(v)
                    .ok_or_else(|| vortex_err!("Failed to cast f64 to {}", type_name::<T>())),
            }?)),
        }
    }

    pub fn checked_sub(self, other: PrimitiveScalar<'a>) -> VortexResult<Option<Self>> {
        self.checked_numeric_operator(other, BinaryNumericOperator::Sub)
    }
}

pub trait FromPrimitiveOrF16: FromPrimitive {
    fn from_f16(v: f16) -> Option<Self>;
}

macro_rules! from_primitive_or_f16_for_non_floating_point {
    ($T:ty) => {
        impl FromPrimitiveOrF16 for $T {
            fn from_f16(_: f16) -> Option<Self> {
                None
            }
        }
    };
}

from_primitive_or_f16_for_non_floating_point!(u8);
from_primitive_or_f16_for_non_floating_point!(u16);
from_primitive_or_f16_for_non_floating_point!(u32);
from_primitive_or_f16_for_non_floating_point!(u64);
from_primitive_or_f16_for_non_floating_point!(i8);
from_primitive_or_f16_for_non_floating_point!(i16);
from_primitive_or_f16_for_non_floating_point!(i32);
from_primitive_or_f16_for_non_floating_point!(i64);

impl FromPrimitiveOrF16 for f16 {
    fn from_f16(v: f16) -> Option<Self> {
        Some(v)
    }
}

impl FromPrimitiveOrF16 for f32 {
    fn from_f16(v: f16) -> Option<Self> {
        Some(v.to_f32())
    }
}

impl FromPrimitiveOrF16 for f64 {
    fn from_f16(v: f16) -> Option<Self> {
        Some(v.to_f64())
    }
}

impl<'a> TryFrom<&'a Scalar> for PrimitiveScalar<'a> {
    type Error = VortexError;

    fn try_from(value: &'a Scalar) -> Result<Self, Self::Error> {
        Self::try_new(value.dtype(), value.value())
    }
}

impl std::ops::Sub for PrimitiveScalar<'_> {
    type Output = VortexResult<Self>;

    fn sub(self, rhs: Self) -> Self::Output {
        self.checked_sub(rhs)?
            .ok_or_else(|| vortex_err!("PrimitiveScalar subtract: overflow or underflow"))
    }
}

impl Scalar {
    pub fn primitive<T: NativePType + Into<PValue>>(value: T, nullability: Nullability) -> Self {
        Self {
            dtype: DType::Primitive(T::PTYPE, nullability),
            value: ScalarValue(InnerScalarValue::Primitive(value.into())),
        }
    }

    pub fn reinterpret_cast(&self, ptype: PType) -> Self {
        let primitive = PrimitiveScalar::try_from(self).unwrap_or_else(|e| {
            vortex_panic!(e, "Failed to reinterpret cast {} to {}", self.dtype, ptype)
        });
        if primitive.ptype() == ptype {
            return self.clone();
        }

        assert_eq!(
            primitive.ptype().byte_width(),
            ptype.byte_width(),
            "can't reinterpret cast between integers of two different widths"
        );

        Scalar::new(
            DType::Primitive(ptype, self.dtype.nullability()),
            primitive
                .pvalue
                .map(|p| p.reinterpret_cast(ptype))
                .map(|x| ScalarValue(InnerScalarValue::Primitive(x)))
                .unwrap_or_else(|| ScalarValue(InnerScalarValue::Null)),
        )
    }

    pub fn zero<T: NativePType + Into<PValue>>(nullability: Nullability) -> Self {
        Self {
            dtype: DType::Primitive(T::PTYPE, nullability),
            value: ScalarValue(InnerScalarValue::Primitive(T::zero().into())),
        }
    }
}

macro_rules! primitive_scalar {
    ($T:ty) => {
        impl TryFrom<&Scalar> for $T {
            type Error = VortexError;

            fn try_from(value: &Scalar) -> Result<Self, Self::Error> {
                <Option<$T>>::try_from(value)?
                    .ok_or_else(|| vortex_err!("Can't extract present value from null scalar"))
            }
        }

        impl TryFrom<Scalar> for $T {
            type Error = VortexError;

            fn try_from(value: Scalar) -> Result<Self, Self::Error> {
                <$T>::try_from(&value)
            }
        }

        impl TryFrom<&Scalar> for Option<$T> {
            type Error = VortexError;

            fn try_from(value: &Scalar) -> Result<Self, Self::Error> {
                Ok(PrimitiveScalar::try_from(value)?.typed_value::<$T>())
            }
        }

        impl TryFrom<Scalar> for Option<$T> {
            type Error = VortexError;

            fn try_from(value: Scalar) -> Result<Self, Self::Error> {
                <Option<$T>>::try_from(&value)
            }
        }

        impl From<$T> for Scalar {
            fn from(value: $T) -> Self {
                Scalar {
                    dtype: DType::Primitive(<$T>::PTYPE, Nullability::NonNullable),
                    value: ScalarValue(InnerScalarValue::Primitive(value.into())),
                }
            }
        }
    };
}

primitive_scalar!(u8);
primitive_scalar!(u16);
primitive_scalar!(u32);
primitive_scalar!(u64);
primitive_scalar!(i8);
primitive_scalar!(i16);
primitive_scalar!(i32);
primitive_scalar!(i64);
primitive_scalar!(f16);
primitive_scalar!(f32);
primitive_scalar!(f64);

/// Read a scalar as usize. For usize only, we implicitly cast for better ergonomics.
impl TryFrom<&Scalar> for usize {
    type Error = VortexError;

    fn try_from(value: &Scalar) -> Result<Self, Self::Error> {
        let prim = PrimitiveScalar::try_from(value)?
            .as_::<u64>()?
            .ok_or_else(|| vortex_err!("cannot convert Null to usize"))?;
        Ok(usize::try_from(prim)?)
    }
}

/// Read a scalar as usize. For usize only, we implicitly cast for better ergonomics.
impl From<usize> for Scalar {
    fn from(value: usize) -> Self {
        Scalar::primitive(value as u64, Nullability::NonNullable)
    }
}

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum BinaryNumericOperator {
    Add,
    Sub,
    Mul,
    Div,
    // Missing from arrow-rs:
    // Min,
    // Max,
    // Pow,
}

impl<'a> PrimitiveScalar<'a> {
    /// Apply the (checked) operator to self and other using SQL-style null semantics.
    ///
    /// If the operation overflows, Ok(None) is returned.
    ///
    /// If the types are incompatible (ignoring nullability), an error is returned.
    ///
    /// If either value is null, the result is null.
    pub fn checked_numeric_operator(
        self,
        other: PrimitiveScalar<'a>,
        op: BinaryNumericOperator,
    ) -> VortexResult<Option<PrimitiveScalar<'a>>> {
        if !self.dtype().eq_ignore_nullability(other.dtype()) {
            vortex_bail!("types must match: {} {}", self.dtype(), other.dtype());
        }
        let result_dtype = if self.dtype().is_nullable() {
            self.dtype()
        } else {
            other.dtype()
        };
        let ptype = self.ptype();

        Ok(match_each_native_ptype!(
            self.ptype(),
            integral: |$P| {
                self.checked_integeral_numeric_operator::<$P>(other, result_dtype, ptype, op)
            }
            floating_point: |$P| {
                let lhs = self.typed_value::<$P>();
                let rhs = other.typed_value::<$P>();
                let value_or_null = match (lhs, rhs) {
                    (_, None) | (None, _) => None,
                    (Some(lhs), Some(rhs)) => match op {
                        BinaryNumericOperator::Add => Some(lhs + rhs),
                        BinaryNumericOperator::Sub => Some(lhs - rhs),
                        BinaryNumericOperator::Mul => Some(lhs * rhs),
                        BinaryNumericOperator::Div => Some(lhs / rhs),
                    }
                };
                Some(Self { dtype: result_dtype, ptype: ptype, pvalue: value_or_null.map(PValue::from) })
            }
        ))
    }

    fn checked_integeral_numeric_operator<
        P: NativePType
            + TryFrom<PValue, Error = VortexError>
            + CheckedSub
            + CheckedAdd
            + CheckedMul
            + CheckedDiv,
    >(
        self,
        other: PrimitiveScalar<'a>,
        result_dtype: &'a DType,
        ptype: PType,
        op: BinaryNumericOperator,
    ) -> Option<PrimitiveScalar<'a>>
    where
        PValue: From<P>,
    {
        let lhs = self.typed_value::<P>();
        let rhs = other.typed_value::<P>();
        let value_or_null_or_overflow = match (lhs, rhs) {
            (_, None) | (None, _) => Some(None),
            (Some(lhs), Some(rhs)) => match op {
                BinaryNumericOperator::Add => lhs.checked_add(&rhs).map(Some),
                BinaryNumericOperator::Sub => lhs.checked_sub(&rhs).map(Some),
                BinaryNumericOperator::Mul => lhs.checked_mul(&rhs).map(Some),
                BinaryNumericOperator::Div => lhs.checked_div(&rhs).map(Some),
            },
        };

        value_or_null_or_overflow.map(|value_or_null| Self {
            dtype: result_dtype,
            ptype,
            pvalue: value_or_null.map(PValue::from),
        })
    }
}

#[cfg(test)]
mod tests {
    use vortex_dtype::{DType, Nullability, PType};
    use vortex_error::VortexError;

    use crate::value::InnerScalarValue;
    use crate::{PValue, PrimitiveScalar, ScalarValue};

    #[test]
    fn test_integer_subtract() {
        let dtype = DType::Primitive(PType::I32, Nullability::NonNullable);
        let p_scalar1 = PrimitiveScalar::try_new(
            &dtype,
            &ScalarValue(InnerScalarValue::Primitive(PValue::I32(5))),
        )
        .unwrap();
        let p_scalar2 = PrimitiveScalar::try_new(
            &dtype,
            &ScalarValue(InnerScalarValue::Primitive(PValue::I32(4))),
        )
        .unwrap();
        let pscalar_or_overflow = p_scalar1.checked_sub(p_scalar2).unwrap();
        let value_or_null_or_type_error = pscalar_or_overflow.unwrap().as_::<i32>();
        assert_eq!(value_or_null_or_type_error.unwrap().unwrap(), 1);

        assert_eq!(
            (p_scalar1 - p_scalar2)
                .unwrap()
                .as_::<i32>()
                .unwrap()
                .unwrap(),
            1
        );
    }

    #[test]
    #[allow(clippy::assertions_on_constants)]
    fn test_integer_subtract_overflow() {
        let dtype = DType::Primitive(PType::I32, Nullability::NonNullable);
        let p_scalar1 = PrimitiveScalar::try_new(
            &dtype,
            &ScalarValue(InnerScalarValue::Primitive(PValue::I32(i32::MIN))),
        )
        .unwrap();
        let p_scalar2 = PrimitiveScalar::try_new(
            &dtype,
            &ScalarValue(InnerScalarValue::Primitive(PValue::I32(i32::MAX))),
        )
        .unwrap();
        let pscalar_or_error = p_scalar1 - p_scalar2;
        match pscalar_or_error {
            Err(VortexError::InvalidArgument(message, _)) => assert_eq!(
                message.as_ref(),
                "PrimitiveScalar subtract: overflow or underflow"
            ),
            res => assert!(false, "expected overflow error but got: {:?}", res),
        }
    }

    #[test]
    fn test_float_subtract() {
        let dtype = DType::Primitive(PType::F32, Nullability::NonNullable);
        let p_scalar1 = PrimitiveScalar::try_new(
            &dtype,
            &ScalarValue(InnerScalarValue::Primitive(PValue::F32(1.99f32))),
        )
        .unwrap();
        let p_scalar2 = PrimitiveScalar::try_new(
            &dtype,
            &ScalarValue(InnerScalarValue::Primitive(PValue::F32(1.0f32))),
        )
        .unwrap();
        let pscalar_or_overflow = p_scalar1.checked_sub(p_scalar2).unwrap();
        let value_or_null_or_type_error = pscalar_or_overflow.unwrap().as_::<f32>();
        assert_eq!(value_or_null_or_type_error.unwrap().unwrap(), 0.99f32);

        assert_eq!(
            (p_scalar1 - p_scalar2)
                .unwrap()
                .as_::<f32>()
                .unwrap()
                .unwrap(),
            0.99f32
        );
    }
}