vortex_flatbuffers/generated/
layout.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
// automatically generated by the FlatBuffers compiler, do not modify


// @generated

use core::mem;
use core::cmp::Ordering;

extern crate flatbuffers;
use self::flatbuffers::{EndianScalar, Follow};

pub enum LayoutOffset {}
#[derive(Copy, Clone, PartialEq)]

/// A `Layout` is a recursive data structure describing the physical layout of Vortex arrays in random access storage.
/// As a starting, concrete example, the first three Layout encodings are defined as:
///
/// 1. encoding == 1, `Flat` -> one buffer, zero child Layouts
/// 2. encoding == 2, `Chunked` -> zero buffers, one or more child Layouts (used for chunks of rows)
/// 3. encoding == 3, `Columnar` -> zero buffers, one or more child Layouts (used for columns of structs)
///
/// The `row_count` represents the number of rows represented by this Layout. This is very useful for
/// pruning the Layout tree based on row filters.
///
/// The `metadata` field is fully opaque at this layer, and allows the Layout implementation corresponding to
/// `encoding` to embed additional information that may be useful for the reader. For example, the `ChunkedLayout`
/// uses the first byte of the `metadata` array as a boolean to indicate whether the first child Layout represents
/// the statistics table for the other chunks. 
pub struct Layout<'a> {
  pub _tab: flatbuffers::Table<'a>,
}

impl<'a> flatbuffers::Follow<'a> for Layout<'a> {
  type Inner = Layout<'a>;
  #[inline]
  unsafe fn follow(buf: &'a [u8], loc: usize) -> Self::Inner {
    Self { _tab: flatbuffers::Table::new(buf, loc) }
  }
}

impl<'a> Layout<'a> {
  pub const VT_ENCODING: flatbuffers::VOffsetT = 4;
  pub const VT_ROW_COUNT: flatbuffers::VOffsetT = 6;
  pub const VT_METADATA: flatbuffers::VOffsetT = 8;
  pub const VT_CHILDREN: flatbuffers::VOffsetT = 10;
  pub const VT_SEGMENTS: flatbuffers::VOffsetT = 12;

  #[inline]
  pub unsafe fn init_from_table(table: flatbuffers::Table<'a>) -> Self {
    Layout { _tab: table }
  }
  #[allow(unused_mut)]
  pub fn create<'bldr: 'args, 'args: 'mut_bldr, 'mut_bldr, A: flatbuffers::Allocator + 'bldr>(
    _fbb: &'mut_bldr mut flatbuffers::FlatBufferBuilder<'bldr, A>,
    args: &'args LayoutArgs<'args>
  ) -> flatbuffers::WIPOffset<Layout<'bldr>> {
    let mut builder = LayoutBuilder::new(_fbb);
    builder.add_row_count(args.row_count);
    if let Some(x) = args.segments { builder.add_segments(x); }
    if let Some(x) = args.children { builder.add_children(x); }
    if let Some(x) = args.metadata { builder.add_metadata(x); }
    builder.add_encoding(args.encoding);
    builder.finish()
  }


  /// The ID of the encoding used for this Layout.
  #[inline]
  pub fn encoding(&self) -> u16 {
    // Safety:
    // Created from valid Table for this object
    // which contains a valid value in this slot
    unsafe { self._tab.get::<u16>(Layout::VT_ENCODING, Some(0)).unwrap()}
  }
  /// The number of rows of data represented by this Layout.
  #[inline]
  pub fn row_count(&self) -> u64 {
    // Safety:
    // Created from valid Table for this object
    // which contains a valid value in this slot
    unsafe { self._tab.get::<u64>(Layout::VT_ROW_COUNT, Some(0)).unwrap()}
  }
  /// Any additional metadata this layout needs to interpret its children.
  /// This does not include data-specific metadata, which the layout should store in a segment.
  #[inline]
  pub fn metadata(&self) -> Option<flatbuffers::Vector<'a, u8>> {
    // Safety:
    // Created from valid Table for this object
    // which contains a valid value in this slot
    unsafe { self._tab.get::<flatbuffers::ForwardsUOffset<flatbuffers::Vector<'a, u8>>>(Layout::VT_METADATA, None)}
  }
  /// The children of this Layout.
  #[inline]
  pub fn children(&self) -> Option<flatbuffers::Vector<'a, flatbuffers::ForwardsUOffset<Layout<'a>>>> {
    // Safety:
    // Created from valid Table for this object
    // which contains a valid value in this slot
    unsafe { self._tab.get::<flatbuffers::ForwardsUOffset<flatbuffers::Vector<'a, flatbuffers::ForwardsUOffset<Layout>>>>(Layout::VT_CHILDREN, None)}
  }
  /// Identifiers for each `Segment` of data required by this layout.
  #[inline]
  pub fn segments(&self) -> Option<flatbuffers::Vector<'a, u32>> {
    // Safety:
    // Created from valid Table for this object
    // which contains a valid value in this slot
    unsafe { self._tab.get::<flatbuffers::ForwardsUOffset<flatbuffers::Vector<'a, u32>>>(Layout::VT_SEGMENTS, None)}
  }
}

impl flatbuffers::Verifiable for Layout<'_> {
  #[inline]
  fn run_verifier(
    v: &mut flatbuffers::Verifier, pos: usize
  ) -> Result<(), flatbuffers::InvalidFlatbuffer> {
    use self::flatbuffers::Verifiable;
    v.visit_table(pos)?
     .visit_field::<u16>("encoding", Self::VT_ENCODING, false)?
     .visit_field::<u64>("row_count", Self::VT_ROW_COUNT, false)?
     .visit_field::<flatbuffers::ForwardsUOffset<flatbuffers::Vector<'_, u8>>>("metadata", Self::VT_METADATA, false)?
     .visit_field::<flatbuffers::ForwardsUOffset<flatbuffers::Vector<'_, flatbuffers::ForwardsUOffset<Layout>>>>("children", Self::VT_CHILDREN, false)?
     .visit_field::<flatbuffers::ForwardsUOffset<flatbuffers::Vector<'_, u32>>>("segments", Self::VT_SEGMENTS, false)?
     .finish();
    Ok(())
  }
}
pub struct LayoutArgs<'a> {
    pub encoding: u16,
    pub row_count: u64,
    pub metadata: Option<flatbuffers::WIPOffset<flatbuffers::Vector<'a, u8>>>,
    pub children: Option<flatbuffers::WIPOffset<flatbuffers::Vector<'a, flatbuffers::ForwardsUOffset<Layout<'a>>>>>,
    pub segments: Option<flatbuffers::WIPOffset<flatbuffers::Vector<'a, u32>>>,
}
impl<'a> Default for LayoutArgs<'a> {
  #[inline]
  fn default() -> Self {
    LayoutArgs {
      encoding: 0,
      row_count: 0,
      metadata: None,
      children: None,
      segments: None,
    }
  }
}

pub struct LayoutBuilder<'a: 'b, 'b, A: flatbuffers::Allocator + 'a> {
  fbb_: &'b mut flatbuffers::FlatBufferBuilder<'a, A>,
  start_: flatbuffers::WIPOffset<flatbuffers::TableUnfinishedWIPOffset>,
}
impl<'a: 'b, 'b, A: flatbuffers::Allocator + 'a> LayoutBuilder<'a, 'b, A> {
  #[inline]
  pub fn add_encoding(&mut self, encoding: u16) {
    self.fbb_.push_slot::<u16>(Layout::VT_ENCODING, encoding, 0);
  }
  #[inline]
  pub fn add_row_count(&mut self, row_count: u64) {
    self.fbb_.push_slot::<u64>(Layout::VT_ROW_COUNT, row_count, 0);
  }
  #[inline]
  pub fn add_metadata(&mut self, metadata: flatbuffers::WIPOffset<flatbuffers::Vector<'b , u8>>) {
    self.fbb_.push_slot_always::<flatbuffers::WIPOffset<_>>(Layout::VT_METADATA, metadata);
  }
  #[inline]
  pub fn add_children(&mut self, children: flatbuffers::WIPOffset<flatbuffers::Vector<'b , flatbuffers::ForwardsUOffset<Layout<'b >>>>) {
    self.fbb_.push_slot_always::<flatbuffers::WIPOffset<_>>(Layout::VT_CHILDREN, children);
  }
  #[inline]
  pub fn add_segments(&mut self, segments: flatbuffers::WIPOffset<flatbuffers::Vector<'b , u32>>) {
    self.fbb_.push_slot_always::<flatbuffers::WIPOffset<_>>(Layout::VT_SEGMENTS, segments);
  }
  #[inline]
  pub fn new(_fbb: &'b mut flatbuffers::FlatBufferBuilder<'a, A>) -> LayoutBuilder<'a, 'b, A> {
    let start = _fbb.start_table();
    LayoutBuilder {
      fbb_: _fbb,
      start_: start,
    }
  }
  #[inline]
  pub fn finish(self) -> flatbuffers::WIPOffset<Layout<'a>> {
    let o = self.fbb_.end_table(self.start_);
    flatbuffers::WIPOffset::new(o.value())
  }
}

impl core::fmt::Debug for Layout<'_> {
  fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
    let mut ds = f.debug_struct("Layout");
      ds.field("encoding", &self.encoding());
      ds.field("row_count", &self.row_count());
      ds.field("metadata", &self.metadata());
      ds.field("children", &self.children());
      ds.field("segments", &self.segments());
      ds.finish()
  }
}
#[inline]
/// Verifies that a buffer of bytes contains a `Layout`
/// and returns it.
/// Note that verification is still experimental and may not
/// catch every error, or be maximally performant. For the
/// previous, unchecked, behavior use
/// `root_as_layout_unchecked`.
pub fn root_as_layout(buf: &[u8]) -> Result<Layout, flatbuffers::InvalidFlatbuffer> {
  flatbuffers::root::<Layout>(buf)
}
#[inline]
/// Verifies that a buffer of bytes contains a size prefixed
/// `Layout` and returns it.
/// Note that verification is still experimental and may not
/// catch every error, or be maximally performant. For the
/// previous, unchecked, behavior use
/// `size_prefixed_root_as_layout_unchecked`.
pub fn size_prefixed_root_as_layout(buf: &[u8]) -> Result<Layout, flatbuffers::InvalidFlatbuffer> {
  flatbuffers::size_prefixed_root::<Layout>(buf)
}
#[inline]
/// Verifies, with the given options, that a buffer of bytes
/// contains a `Layout` and returns it.
/// Note that verification is still experimental and may not
/// catch every error, or be maximally performant. For the
/// previous, unchecked, behavior use
/// `root_as_layout_unchecked`.
pub fn root_as_layout_with_opts<'b, 'o>(
  opts: &'o flatbuffers::VerifierOptions,
  buf: &'b [u8],
) -> Result<Layout<'b>, flatbuffers::InvalidFlatbuffer> {
  flatbuffers::root_with_opts::<Layout<'b>>(opts, buf)
}
#[inline]
/// Verifies, with the given verifier options, that a buffer of
/// bytes contains a size prefixed `Layout` and returns
/// it. Note that verification is still experimental and may not
/// catch every error, or be maximally performant. For the
/// previous, unchecked, behavior use
/// `root_as_layout_unchecked`.
pub fn size_prefixed_root_as_layout_with_opts<'b, 'o>(
  opts: &'o flatbuffers::VerifierOptions,
  buf: &'b [u8],
) -> Result<Layout<'b>, flatbuffers::InvalidFlatbuffer> {
  flatbuffers::size_prefixed_root_with_opts::<Layout<'b>>(opts, buf)
}
#[inline]
/// Assumes, without verification, that a buffer of bytes contains a Layout and returns it.
/// # Safety
/// Callers must trust the given bytes do indeed contain a valid `Layout`.
pub unsafe fn root_as_layout_unchecked(buf: &[u8]) -> Layout {
  flatbuffers::root_unchecked::<Layout>(buf)
}
#[inline]
/// Assumes, without verification, that a buffer of bytes contains a size prefixed Layout and returns it.
/// # Safety
/// Callers must trust the given bytes do indeed contain a valid size prefixed `Layout`.
pub unsafe fn size_prefixed_root_as_layout_unchecked(buf: &[u8]) -> Layout {
  flatbuffers::size_prefixed_root_unchecked::<Layout>(buf)
}
#[inline]
pub fn finish_layout_buffer<'a, 'b, A: flatbuffers::Allocator + 'a>(
    fbb: &'b mut flatbuffers::FlatBufferBuilder<'a, A>,
    root: flatbuffers::WIPOffset<Layout<'a>>) {
  fbb.finish(root, None);
}

#[inline]
pub fn finish_size_prefixed_layout_buffer<'a, 'b, A: flatbuffers::Allocator + 'a>(fbb: &'b mut flatbuffers::FlatBufferBuilder<'a, A>, root: flatbuffers::WIPOffset<Layout<'a>>) {
  fbb.finish_size_prefixed(root, None);
}