vortex_expr/forms/cnf.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
use vortex_error::VortexResult;
use super::nnf::nnf;
use crate::traversal::{Node as _, NodeVisitor, TraversalOrder};
use crate::{BinaryExpr, ExprRef, Operator};
/// Return an equivalent expression in Conjunctive Normal Form (CNF).
///
/// A CNF expression is a vector of vectors. The outer vector is a conjunction. The inner vectors
/// are disjunctions. Neither [Operator::And] nor [Operator::Or] may appear in the
/// disjunctions. Moreover, each disjunction in a CNF expression must be in Negative Normal Form.
///
/// # Examples
///
/// All the NNF examples also apply to CNF, for example double negation is removed entirely:
///
/// ```
/// use vortex_expr::{not, col};
/// use vortex_expr::forms::cnf::cnf;
///
/// let double_negation = not(not(col("a")));
/// let cnfed = cnf(double_negation).unwrap();
/// assert_eq!(cnfed, vec![vec![col("a")]]);
/// ```
///
/// Unlike NNF, CNF, lifts conjunctions to the top-level and distributions disjunctions such that
/// there is at most one disjunction for each conjunction operand:
///
/// ```
/// use vortex_expr::{not, col, or, and};
/// use vortex_expr::forms::cnf::cnf;
///
/// assert_eq!(
/// cnf(
/// or(
/// or(
/// and(col("a"), col("b")),
/// col("c")
/// ),
/// col("d")
/// )
/// ).unwrap(),
/// vec![
/// vec![col("a"), col("c"), col("d")],
/// vec![col("b"), col("c"), col("d")]
/// ]
/// );
/// ```
///
/// ```
/// use vortex_expr::{not, col, or, and};
/// use vortex_expr::forms::cnf::cnf;
///
/// assert_eq!(
/// cnf(
/// or(
/// and(col("a"), col("b")),
/// col("c"),
/// )
/// ).unwrap(),
/// vec![
/// vec![col("a"), col("c")],
/// vec![col("b"), col("c")],
/// ]
/// );
/// ```
///
/// Vortex extends the CNF definition to any Boolean-valued expression, even ones with non-Boolean
/// parameters:
///
/// ```
/// use vortex_expr::{not, col, or, and, gt_eq, lit, not_eq, lt, eq};
/// use vortex_expr::forms::cnf::cnf;
/// use itertools::Itertools;
///
/// assert_eq!(
/// cnf(
/// or(
/// and(
/// gt_eq(col("earnings"), lit(50_000)),
/// not_eq(col("role"), lit("Manager"))
/// ),
/// col("special_flag")
/// ),
/// ).unwrap(),
/// vec![
/// vec![
/// gt_eq(col("earnings"), lit(50_000)),
/// col("special_flag")
/// ],
/// vec![
/// not_eq(col("role"), lit("Manager")),
/// col("special_flag")
/// ]
/// ]
/// );
/// ```
///
/// ```
/// use vortex_expr::{not, col, or, and, gt_eq, lit, not_eq, lt, eq};
/// use vortex_expr::forms::cnf::cnf;
/// use itertools::Itertools;
///
/// assert_eq!(
/// cnf(
/// or(
/// or(
/// and(
/// gt_eq(col("earnings"), lit(50_000)),
/// not_eq(col("role"), lit("Manager"))
/// ),
/// col("special_flag")
/// ),
/// and(
/// lt(col("tenure"), lit(5)),
/// eq(col("role"), lit("Engineer"))
/// ),
/// )
/// ).unwrap(),
/// vec![
/// vec![
/// gt_eq(col("earnings"), lit(50_000)),
/// col("special_flag"),
/// lt(col("tenure"), lit(5)),
/// ],
/// vec![
/// gt_eq(col("earnings"), lit(50_000)),
/// col("special_flag"),
/// eq(col("role"), lit("Engineer")),
/// ],
/// vec![
/// not_eq(col("role"), lit("Manager")),
/// col("special_flag"),
/// lt(col("tenure"), lit(5)),
/// ],
/// vec![
/// not_eq(col("role"), lit("Manager")),
/// col("special_flag"),
/// eq(col("role"), lit("Engineer")),
/// ],
/// ]
/// );
/// ```
///
pub fn cnf(expr: ExprRef) -> VortexResult<Vec<Vec<ExprRef>>> {
let nnf = nnf(expr)?;
let mut visitor = CNFVisitor::default();
nnf.accept(&mut visitor)?;
Ok(visitor.finish())
}
#[derive(Default)]
struct CNFVisitor {
conjuncts_of_disjuncts: Vec<Vec<ExprRef>>,
}
impl CNFVisitor {
fn finish(self) -> Vec<Vec<ExprRef>> {
self.conjuncts_of_disjuncts
}
}
impl NodeVisitor<'_> for CNFVisitor {
type NodeTy = ExprRef;
fn visit_down(&mut self, node: &ExprRef) -> VortexResult<TraversalOrder> {
if let Some(binary_expr) = node.as_any().downcast_ref::<BinaryExpr>() {
match binary_expr.op() {
Operator::And => return Ok(TraversalOrder::Continue),
Operator::Or => {
let mut visitor = CNFVisitor::default();
binary_expr.lhs().accept(&mut visitor)?;
let lhs_conjuncts = visitor.finish();
let mut visitor = CNFVisitor::default();
binary_expr.rhs().accept(&mut visitor)?;
let rhs_conjuncts = visitor.finish();
self.conjuncts_of_disjuncts
.extend(lhs_conjuncts.iter().flat_map(|lhs_disjunct| {
rhs_conjuncts.iter().map(|rhs_disjunct| {
let mut lhs_copy = lhs_disjunct.clone();
lhs_copy.extend(rhs_disjunct.iter().cloned());
lhs_copy
})
}));
return Ok(TraversalOrder::Skip);
}
_ => {}
}
}
// Anything other than And and Or are terminals from the perspective of CNF
self.conjuncts_of_disjuncts.push(vec![node.clone()]);
Ok(TraversalOrder::Skip)
}
}