vortex_buffer/alignment.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
use std::fmt::Display;
use std::ops::Deref;
use vortex_error::VortexExpect;
/// The alignment of a buffer.
///
/// This type is a wrapper around `usize` that ensures the alignment is a power of 2 and fits into
/// a `u16`.
#[derive(Clone, Debug, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Alignment(usize);
impl Alignment {
/// Create a new alignment.
///
/// ## Panics
///
/// Panics if `align` is not a power of 2, or is greater than `u16::MAX`.
#[inline]
pub const fn new(align: usize) -> Self {
assert!(align > 0, "Alignment must be greater than 0");
assert!(align <= u16::MAX as usize, "Alignment must fit into u16");
assert!(align.is_power_of_two(), "Alignment must be a power of 2");
Self(align)
}
/// Create an alignment from the alignment of a type `T`.
///
/// ## Example
///
/// ```
/// use vortex_buffer::Alignment;
///
/// assert_eq!(Alignment::new(4), Alignment::of::<i32>());
/// assert_eq!(Alignment::new(8), Alignment::of::<i64>());
/// assert_eq!(Alignment::new(16), Alignment::of::<u128>());
/// ```
#[inline]
pub const fn of<T>() -> Self {
Self::new(align_of::<T>())
}
/// Check if this alignment is a "larger" than another alignment.
///
/// ## Example
///
/// ```
/// use vortex_buffer::Alignment;
///
/// let a = Alignment::new(4);
/// let b = Alignment::new(2);
/// assert!(a.is_aligned_to(b));
/// assert!(!b.is_aligned_to(a));
/// ```
#[inline]
pub fn is_aligned_to(&self, other: Alignment) -> bool {
// Since we know alignments are powers of 2, we can compare them by checking if the number
// of trailing zeros in the binary representation of the alignment is greater or equal.
self.0.trailing_zeros() >= other.0.trailing_zeros()
}
}
impl Display for Alignment {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
impl Deref for Alignment {
type Target = usize;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl From<usize> for Alignment {
fn from(value: usize) -> Self {
Self::new(value)
}
}
impl From<u16> for Alignment {
fn from(value: u16) -> Self {
Self::new(usize::from(value))
}
}
impl From<Alignment> for usize {
fn from(value: Alignment) -> Self {
value.0
}
}
impl From<Alignment> for u16 {
fn from(value: Alignment) -> Self {
u16::try_from(value.0).vortex_expect("Alignment must fit into u16")
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
#[should_panic]
fn alignment_zero() {
Alignment::new(0);
}
#[test]
#[should_panic]
fn alignment_overflow() {
Alignment::new(u16::MAX as usize + 1);
}
#[test]
#[should_panic]
fn alignment_not_power_of_two() {
Alignment::new(3);
}
#[test]
fn is_aligned_to() {
assert!(Alignment::new(1).is_aligned_to(Alignment::new(1)));
assert!(Alignment::new(2).is_aligned_to(Alignment::new(1)));
assert!(Alignment::new(4).is_aligned_to(Alignment::new(1)));
assert!(!Alignment::new(1).is_aligned_to(Alignment::new(2)));
}
}