vortex_array/data/
viewed.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
use std::fmt::{Debug, Formatter};
use std::sync::Arc;

use enum_iterator::all;
use flatbuffers::Follow;
use itertools::Itertools;
use vortex_buffer::ByteBuffer;
use vortex_dtype::{DType, Nullability, PType};
use vortex_error::{vortex_err, VortexExpect as _, VortexResult};
use vortex_flatbuffers::FlatBuffer;
use vortex_scalar::{Scalar, ScalarValue};

use crate::encoding::opaque::OpaqueEncoding;
use crate::encoding::EncodingRef;
use crate::stats::{Stat, Statistics, StatsSet};
use crate::{flatbuffers as fb, ArrayData, ArrayMetadata, ChildrenCollector, ContextRef};

/// Zero-copy view over flatbuffer-encoded array data, created without eager serialization.
#[derive(Clone)]
pub(super) struct ViewedArrayData {
    pub(super) encoding: EncodingRef,
    pub(super) dtype: DType,
    pub(super) len: usize,
    pub(super) metadata: Arc<dyn ArrayMetadata>,
    pub(super) flatbuffer: FlatBuffer,
    pub(super) flatbuffer_loc: usize,
    pub(super) buffers: Arc<[ByteBuffer]>,
    pub(super) ctx: ContextRef,
    #[cfg(feature = "canonical_counter")]
    pub(super) canonical_counter: Arc<std::sync::atomic::AtomicUsize>,
}

impl Debug for ViewedArrayData {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("ArrayView")
            .field("encoding", &self.encoding)
            .field("dtype", &self.dtype)
            .field("buffers", &self.buffers)
            .field("ctx", &self.ctx)
            .finish()
    }
}

impl ViewedArrayData {
    pub fn flatbuffer(&self) -> fb::Array {
        unsafe { fb::Array::follow(self.flatbuffer.as_ref(), self.flatbuffer_loc) }
    }

    pub fn metadata_bytes(&self) -> Option<&[u8]> {
        self.flatbuffer().metadata().map(|m| m.bytes())
    }

    // TODO(ngates): should we separate self and DType lifetimes? Should DType be cloned?
    pub fn child(&self, idx: usize, dtype: &DType, len: usize) -> VortexResult<Self> {
        let child = self
            .array_child(idx)
            .ok_or_else(|| vortex_err!("ArrayView: array_child({idx}) not found"))?;
        let flatbuffer_loc = child._tab.loc();

        let encoding = self
            .ctx
            .lookup_encoding(child.encoding())
            .unwrap_or_else(|| {
                // We must return an EncodingRef, which requires a static reference.
                // OpaqueEncoding however must be created dynamically, since we do not know ahead
                // of time which of the ~65,000 unknown code IDs we will end up seeing. Thus, we
                // allocate (and leak) 2 bytes of memory to create a new encoding.
                Box::leak(Box::new(OpaqueEncoding(child.encoding())))
            });

        let metadata = encoding.load_metadata(child.metadata().map(|m| m.bytes()))?;

        Ok(Self {
            encoding,
            dtype: dtype.clone(),
            len,
            metadata,
            flatbuffer: self.flatbuffer.clone(),
            flatbuffer_loc,
            buffers: self.buffers.clone(),
            ctx: self.ctx.clone(),
            #[cfg(feature = "canonical_counter")]
            canonical_counter: Arc::new(std::sync::atomic::AtomicUsize::new(0)),
        })
    }

    fn array_child(&self, idx: usize) -> Option<fb::Array> {
        let children = self.flatbuffer().children()?;
        (idx < children.len()).then(|| children.get(idx))
    }

    pub fn nchildren(&self) -> usize {
        self.flatbuffer().children().map(|c| c.len()).unwrap_or(0)
    }

    pub fn children(&self) -> Vec<ArrayData> {
        let mut collector = ChildrenCollector::default();
        self.encoding
            .accept(&ArrayData::from(self.clone()), &mut collector)
            .vortex_expect("Failed to get children");
        collector.children()
    }

    pub fn nbuffers(&self) -> usize {
        self.flatbuffer()
            .buffers()
            .map(|b| b.len())
            .unwrap_or_default()
    }

    pub fn buffer(&self, index: usize) -> Option<&ByteBuffer> {
        self.flatbuffer()
            .buffers()
            .map(|buffers| {
                assert!(
                    index < buffers.len(),
                    "ArrayView buffer index out of bounds"
                );
                buffers.get(index) as usize
            })
            .map(|idx| &self.buffers[idx])
    }
}

impl Statistics for ViewedArrayData {
    fn get(&self, stat: Stat) -> Option<Scalar> {
        match stat {
            Stat::Max => {
                let max = self.flatbuffer().stats()?.max();
                max.and_then(|v| ScalarValue::try_from(v).ok())
                    .map(|v| Scalar::new(self.dtype.clone(), v))
            }
            Stat::Min => {
                let min = self.flatbuffer().stats()?.min();
                min.and_then(|v| ScalarValue::try_from(v).ok())
                    .map(|v| Scalar::new(self.dtype.clone(), v))
            }
            Stat::IsConstant => self.flatbuffer().stats()?.is_constant().map(bool::into),
            Stat::IsSorted => self.flatbuffer().stats()?.is_sorted().map(bool::into),
            Stat::IsStrictSorted => self
                .flatbuffer()
                .stats()?
                .is_strict_sorted()
                .map(bool::into),
            Stat::RunCount => self.flatbuffer().stats()?.run_count().map(u64::into),
            Stat::TrueCount => self.flatbuffer().stats()?.true_count().map(u64::into),
            Stat::NullCount => self.flatbuffer().stats()?.null_count().map(u64::into),
            Stat::BitWidthFreq => {
                let element_dtype =
                    Arc::new(DType::Primitive(PType::U64, Nullability::NonNullable));
                self.flatbuffer()
                    .stats()?
                    .bit_width_freq()
                    .map(|v| v.iter().map(Scalar::from).collect_vec())
                    .map(|v| Scalar::list(element_dtype, v, Nullability::NonNullable))
            }
            Stat::TrailingZeroFreq => self
                .flatbuffer()
                .stats()?
                .trailing_zero_freq()
                .map(|v| v.iter().collect_vec())
                .map(|v| v.into()),
            Stat::UncompressedSizeInBytes => self
                .flatbuffer()
                .stats()?
                .uncompressed_size_in_bytes()
                .map(u64::into),
        }
    }

    /// NB: part of the contract for to_set is that it does not do any expensive computation.
    /// In other implementations, this means returning the underlying stats map, but for the flatbuffer
    /// implementation, we have 'precalculated' stats in the flatbuffer itself, so we need to
    /// allocate a stats map and populate it with those fields.
    fn to_set(&self) -> StatsSet {
        let mut result = StatsSet::default();
        for stat in all::<Stat>() {
            if let Some(value) = self.get(stat) {
                result.set(stat, value)
            }
        }
        result
    }

    /// We want to avoid any sort of allocation on instantiation of the ArrayView, so we
    /// do not allocate a stats_set to cache values.
    fn set(&self, _stat: Stat, _value: Scalar) {
        // We cannot modify stats on a view
    }

    fn clear(&self, _stat: Stat) {
        // We cannot modify stats on a view
    }

    fn retain_only(&self, _stats: &[Stat]) {
        // We cannot modify stats on a view
    }

    fn compute(&self, stat: Stat) -> Option<Scalar> {
        if let Some(s) = self.get(stat) {
            return Some(s);
        }

        self.encoding
            .compute_statistics(&ArrayData::from(self.clone()), stat)
            .ok()?
            .get(stat)
            .cloned()
    }
}