1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
use std::fmt::{Display, Formatter};
use std::mem::size_of;

use itertools::Itertools;
use num_traits::{CheckedSub, Float, PrimInt, ToPrimitive};
use serde::{Deserialize, Serialize};

mod array;
mod compress;
mod compute;

pub use array::*;
pub use compress::*;

const SAMPLE_SIZE: usize = 32;

#[derive(Debug, Copy, Clone, PartialEq, Eq, Serialize, Deserialize)]
pub struct Exponents {
    pub e: u8,
    pub f: u8,
}

impl Display for Exponents {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        write!(f, "e: {}, f: {}", self.e, self.f)
    }
}

mod private {
    pub trait Sealed {}

    impl Sealed for f32 {}
    impl Sealed for f64 {}
}

pub trait ALPFloat: private::Sealed + Float + Display + 'static {
    type ALPInt: PrimInt + Display + ToPrimitive;

    const FRACTIONAL_BITS: u8;
    const MAX_EXPONENT: u8;
    const SWEET: Self;
    const F10: &'static [Self];
    const IF10: &'static [Self];

    /// Round to the nearest floating integer by shifting in and out of the low precision range.
    #[inline]
    fn fast_round(self) -> Self {
        (self + Self::SWEET) - Self::SWEET
    }

    /// Equivalent to calling `as` to cast the primitive float to the target integer type.
    fn as_int(self) -> Self::ALPInt;

    /// Convert from the integer type back to the float type using `as`.
    fn from_int(n: Self::ALPInt) -> Self;

    fn find_best_exponents(values: &[Self]) -> Exponents {
        let mut best_exp = Exponents { e: 0, f: 0 };
        let mut best_nbytes: usize = usize::MAX;

        let sample = (values.len() > SAMPLE_SIZE).then(|| {
            values
                .iter()
                .step_by(values.len() / SAMPLE_SIZE)
                .cloned()
                .collect_vec()
        });

        for e in (0..Self::MAX_EXPONENT).rev() {
            for f in 0..e {
                let (_, encoded, _, exc_patches) = Self::encode(
                    sample.as_deref().unwrap_or(values),
                    Some(Exponents { e, f }),
                );

                let size = Self::estimate_encoded_size(&encoded, &exc_patches);
                if size < best_nbytes {
                    best_nbytes = size;
                    best_exp = Exponents { e, f };
                } else if size == best_nbytes && e - f < best_exp.e - best_exp.f {
                    best_exp = Exponents { e, f };
                }
            }
        }

        best_exp
    }

    #[inline]
    fn estimate_encoded_size(encoded: &[Self::ALPInt], patches: &[Self]) -> usize {
        let bits_per_encoded = encoded
            .iter()
            .minmax()
            .into_option()
            // estimating bits per encoded value assuming frame-of-reference + bitpacking-without-patches
            .and_then(|(min, max)| max.checked_sub(min))
            .and_then(|range_size: <Self as ALPFloat>::ALPInt| range_size.to_u64())
            .and_then(|range_size| {
                range_size
                    .checked_ilog2()
                    .map(|bits| (bits + 1) as usize)
                    .or(Some(0))
            })
            .unwrap_or(size_of::<Self::ALPInt>() * 8);

        let encoded_bytes = (encoded.len() * bits_per_encoded + 7) / 8;
        // each patch is a value + a position
        // in practice, patch positions are in [0, u16::MAX] because of how we chunk
        let patch_bytes = patches.len() * (size_of::<Self>() + size_of::<u16>());

        encoded_bytes + patch_bytes
    }

    fn encode(
        values: &[Self],
        exponents: Option<Exponents>,
    ) -> (Exponents, Vec<Self::ALPInt>, Vec<u64>, Vec<Self>) {
        let exp = exponents.unwrap_or_else(|| Self::find_best_exponents(values));

        let mut encoded_output = Vec::with_capacity(values.len());
        let mut patch_indices = Vec::new();
        let mut patch_values = Vec::new();
        let mut fill_value: Option<Self::ALPInt> = None;

        // this is intentionally branchless
        // we batch this into 32KB of values at a time to make it more L1 cache friendly
        let encode_chunk_size: usize = (32 << 10) / size_of::<Self::ALPInt>();
        for chunk in values.chunks(encode_chunk_size) {
            encode_chunk_unchecked(
                chunk,
                exp,
                &mut encoded_output,
                &mut patch_indices,
                &mut patch_values,
                &mut fill_value,
            );
        }

        (exp, encoded_output, patch_indices, patch_values)
    }

    #[inline]
    fn encode_single(value: Self, exponents: Exponents) -> Result<Self::ALPInt, Self> {
        let encoded = unsafe { Self::encode_single_unchecked(value, exponents) };
        let decoded = Self::decode_single(encoded, exponents);
        if decoded == value {
            return Ok(encoded);
        }
        Err(value)
    }

    fn decode(encoded: &[Self::ALPInt], exponents: Exponents) -> Vec<Self> {
        let mut values = Vec::with_capacity(encoded.len());
        for encoded in encoded {
            values.push(Self::decode_single(*encoded, exponents));
        }
        values
    }

    fn decode_vec(encoded: Vec<Self::ALPInt>, exponents: Exponents) -> Vec<Self> {
        encoded
            .into_iter()
            .map(move |encoded| Self::decode_single(encoded, exponents))
            .collect_vec()
    }

    #[inline]
    fn decode_single(encoded: Self::ALPInt, exponents: Exponents) -> Self {
        Self::from_int(encoded) * Self::F10[exponents.f as usize] * Self::IF10[exponents.e as usize]
    }

    /// # Safety
    ///
    /// The returned value may not decode back to the original value.
    #[inline(always)]
    unsafe fn encode_single_unchecked(value: Self, exponents: Exponents) -> Self::ALPInt {
        (value * Self::F10[exponents.e as usize] * Self::IF10[exponents.f as usize])
            .fast_round()
            .as_int()
    }
}

#[allow(clippy::cast_possible_truncation)]
fn encode_chunk_unchecked<T: ALPFloat>(
    chunk: &[T],
    exp: Exponents,
    encoded_output: &mut Vec<T::ALPInt>,
    patch_indices: &mut Vec<u64>,
    patch_values: &mut Vec<T>,
    fill_value: &mut Option<T::ALPInt>,
) {
    let num_prev_encoded = encoded_output.len();
    let num_prev_patches = patch_indices.len();
    assert_eq!(patch_indices.len(), patch_values.len());
    let has_filled = fill_value.is_some();

    // encode the chunk, counting the number of patches
    let mut chunk_patch_count = 0;
    encoded_output.extend(chunk.iter().map(|v| {
        let encoded = unsafe { T::encode_single_unchecked(*v, exp) };
        let decoded = T::decode_single(encoded, exp);
        let neq = (decoded != *v) as usize;
        chunk_patch_count += neq;
        encoded
    }));
    let chunk_patch_count = chunk_patch_count; // immutable hereafter
    assert_eq!(encoded_output.len(), num_prev_encoded + chunk.len());

    if chunk_patch_count > 0 {
        // we need to gather the patches for this chunk
        // preallocate space for the patches (plus one because our loop may attempt to write one past the end)
        patch_indices.reserve(chunk_patch_count + 1);
        patch_values.reserve(chunk_patch_count + 1);

        // record the patches in this chunk
        let patch_indices_mut = patch_indices.spare_capacity_mut();
        let patch_values_mut = patch_values.spare_capacity_mut();
        let mut chunk_patch_index = 0;
        for i in num_prev_encoded..encoded_output.len() {
            let decoded = T::decode_single(encoded_output[i], exp);
            // write() is only safe to call more than once because the values are primitive (i.e., Drop is a no-op)
            patch_indices_mut[chunk_patch_index].write(i as u64);
            patch_values_mut[chunk_patch_index].write(chunk[i - num_prev_encoded]);
            chunk_patch_index += (decoded != chunk[i - num_prev_encoded]) as usize;
        }
        assert_eq!(chunk_patch_index, chunk_patch_count);
        unsafe {
            patch_indices.set_len(num_prev_patches + chunk_patch_count);
            patch_values.set_len(num_prev_patches + chunk_patch_count);
        }
    }

    // find the first successfully encoded value (i.e., not patched)
    // this is our fill value for missing values
    if fill_value.is_none() && (num_prev_encoded + chunk_patch_count < encoded_output.len()) {
        assert_eq!(num_prev_encoded, num_prev_patches);
        for i in num_prev_encoded..encoded_output.len() {
            if i >= patch_indices.len() || patch_indices[i] != i as u64 {
                *fill_value = Some(encoded_output[i]);
                break;
            }
        }
    }

    // replace the patched values in the encoded array with the fill value
    // for better downstream compression
    if let Some(fill_value) = fill_value {
        // handle the edge case where the first N >= 1 chunks are all patches
        let start_patch = if !has_filled { 0 } else { num_prev_patches };
        for patch_idx in &patch_indices[start_patch..] {
            encoded_output[*patch_idx as usize] = *fill_value;
        }
    }
}

impl ALPFloat for f32 {
    type ALPInt = i32;
    const FRACTIONAL_BITS: u8 = 23;
    const MAX_EXPONENT: u8 = 10;
    const SWEET: Self =
        (1 << Self::FRACTIONAL_BITS) as Self + (1 << (Self::FRACTIONAL_BITS - 1)) as Self;

    const F10: &'static [Self] = &[
        1.0,
        10.0,
        100.0,
        1000.0,
        10000.0,
        100000.0,
        1000000.0,
        10000000.0,
        100000000.0,
        1000000000.0,
        10000000000.0, // 10^10
    ];
    const IF10: &'static [Self] = &[
        1.0,
        0.1,
        0.01,
        0.001,
        0.0001,
        0.00001,
        0.000001,
        0.0000001,
        0.00000001,
        0.000000001,
        0.0000000001, // 10^-10
    ];

    #[inline(always)]
    #[allow(clippy::cast_possible_truncation)]
    fn as_int(self) -> Self::ALPInt {
        self as _
    }

    #[inline(always)]
    fn from_int(n: Self::ALPInt) -> Self {
        n as _
    }
}

impl ALPFloat for f64 {
    type ALPInt = i64;
    const FRACTIONAL_BITS: u8 = 52;
    const MAX_EXPONENT: u8 = 18; // 10^18 is the maximum i64
    const SWEET: Self =
        (1u64 << Self::FRACTIONAL_BITS) as Self + (1u64 << (Self::FRACTIONAL_BITS - 1)) as Self;
    const F10: &'static [Self] = &[
        1.0,
        10.0,
        100.0,
        1000.0,
        10000.0,
        100000.0,
        1000000.0,
        10000000.0,
        100000000.0,
        1000000000.0,
        10000000000.0,
        100000000000.0,
        1000000000000.0,
        10000000000000.0,
        100000000000000.0,
        1000000000000000.0,
        10000000000000000.0,
        100000000000000000.0,
        1000000000000000000.0,
        10000000000000000000.0,
        100000000000000000000.0,
        1000000000000000000000.0,
        10000000000000000000000.0,
        100000000000000000000000.0, // 10^23
    ];

    const IF10: &'static [Self] = &[
        1.0,
        0.1,
        0.01,
        0.001,
        0.0001,
        0.00001,
        0.000001,
        0.0000001,
        0.00000001,
        0.000000001,
        0.0000000001,
        0.00000000001,
        0.000000000001,
        0.0000000000001,
        0.00000000000001,
        0.000000000000001,
        0.0000000000000001,
        0.00000000000000001,
        0.000000000000000001,
        0.0000000000000000001,
        0.00000000000000000001,
        0.000000000000000000001,
        0.0000000000000000000001,
        0.00000000000000000000001, // 10^-23
    ];

    #[inline(always)]
    #[allow(clippy::cast_possible_truncation)]
    fn as_int(self) -> Self::ALPInt {
        self as _
    }

    #[inline(always)]
    fn from_int(n: Self::ALPInt) -> Self {
        n as _
    }
}