pyvortex/io.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
use std::path::Path;
use pyo3::prelude::*;
use pyo3::pyfunction;
use pyo3::types::PyString;
use tokio::fs::File;
use vortex::file::VortexFileWriter;
use vortex::sampling_compressor::SamplingCompressor;
use vortex::ArrayData;
use crate::dataset::{ObjectStoreUrlDataset, TokioFileDataset};
use crate::expr::PyExpr;
use crate::{PyArray, TOKIO_RUNTIME};
/// Read a vortex struct array from the local filesystem.
///
/// Parameters
/// ----------
/// path : :class:`str`
/// The file path to read from.
/// projection : :class:`list` [ :class:`str` ``|`` :class:`int` ]
/// The columns to read identified either by their index or name.
/// row_filter : :class:`.Expr`
/// Keep only the rows for which this expression evaluates to true.
///
/// Examples
/// --------
///
/// Read an array with a structured column and nulls at multiple levels and in multiple columns.
///
/// >>> a = vortex.array([
/// ... {'name': 'Joseph', 'age': 25},
/// ... {'name': None, 'age': 31},
/// ... {'name': 'Angela', 'age': None},
/// ... {'name': 'Mikhail', 'age': 57},
/// ... {'name': None, 'age': None},
/// ... ])
/// >>> vortex.io.write_path(a, "a.vortex")
/// >>> b = vortex.io.read_path("a.vortex")
/// >>> b.to_arrow_array()
/// <pyarrow.lib.StructArray object at ...>
/// -- is_valid: all not null
/// -- child 0 type: int64
/// [
/// 25,
/// 31,
/// null,
/// 57,
/// null
/// ]
/// -- child 1 type: string_view
/// [
/// "Joseph",
/// null,
/// "Angela",
/// "Mikhail",
/// null
/// ]
///
/// Read just the age column:
///
/// >>> c = vortex.io.read_path("a.vortex", projection = ["age"])
/// >>> c.to_arrow_array()
/// <pyarrow.lib.StructArray object at ...>
/// -- is_valid: all not null
/// -- child 0 type: int64
/// [
/// 25,
/// 31,
/// null,
/// 57,
/// null
/// ]
///
/// Read just the name column, by its index:
///
/// >>> d = vortex.io.read_path("a.vortex", projection = [1])
/// >>> d.to_arrow_array()
/// <pyarrow.lib.StructArray object at ...>
/// -- is_valid: all not null
/// -- child 0 type: string_view
/// [
/// "Joseph",
/// null,
/// "Angela",
/// "Mikhail",
/// null
/// ]
///
///
/// Keep rows with an age above 35. This will read O(N_KEPT) rows, when the file format allows.
///
/// >>> e = vortex.io.read_path("a.vortex", row_filter = vortex.expr.column("age") > 35)
/// >>> e.to_arrow_array()
/// <pyarrow.lib.StructArray object at ...>
/// -- is_valid: all not null
/// -- child 0 type: int64
/// [
/// 57
/// ]
/// -- child 1 type: string_view
/// [
/// "Mikhail"
/// ]
///
/// TODO(DK): Repeating a column in a projection does not work
///
/// Read the age column by name, twice, and the name column by index, once:
///
/// >>> # e = vortex.io.read_path("a.vortex", projection = ["age", 1, "age"])
/// >>> # e.to_arrow_array()
///
/// TODO(DK): Top-level nullness does not work.
///
/// >>> a = vortex.array([
/// ... {'name': 'Joseph', 'age': 25},
/// ... {'name': None, 'age': 31},
/// ... {'name': 'Angela', 'age': None},
/// ... None,
/// ... {'name': 'Mikhail', 'age': 57},
/// ... {'name': None, 'age': None},
/// ... ])
/// >>> vortex.io.write_path(a, "a.vortex")
/// >>> # b = vortex.io.read_path("a.vortex")
/// >>> # b.to_arrow_array()
///
#[pyfunction]
#[pyo3(signature = (path, *, projection = None, row_filter = None, indices = None))]
pub fn read_path(
path: Bound<PyString>,
projection: Option<Vec<Bound<PyAny>>>,
row_filter: Option<&Bound<PyExpr>>,
indices: Option<&PyArray>,
) -> PyResult<PyArray> {
let dataset = TOKIO_RUNTIME.block_on(TokioFileDataset::try_new(path.extract()?))?;
dataset.to_array(projection, row_filter, indices)
}
/// Read a vortex struct array from a URL.
///
/// .. seealso::
/// :func:`.read_path`
///
/// Parameters
/// ----------
/// url : :class:`str`
/// The URL to read from.
/// projection : :class:`list` [ :class:`str` ``|`` :class:`int` ]
/// The columns to read identified either by their index or name.
/// row_filter : :class:`.Expr`
/// Keep only the rows for which this expression evaluates to true.
///
/// Examples
/// --------
///
/// Read an array from an HTTPS URL:
///
/// >>> a = vortex.io.read_url("https://example.com/dataset.vortex") # doctest: +SKIP
///
/// Read an array from an S3 URL:
///
/// >>> a = vortex.io.read_url("s3://bucket/path/to/dataset.vortex") # doctest: +SKIP
///
/// Read an array from an Azure Blob File System URL:
///
/// >>> a = vortex.io.read_url("abfss://my_file_system@my_account.dfs.core.windows.net/path/to/dataset.vortex") # doctest: +SKIP
///
/// Read an array from an Azure Blob Stroage URL:
///
/// >>> a = vortex.io.read_url("https://my_account.blob.core.windows.net/my_container/path/to/dataset.vortex") # doctest: +SKIP
///
/// Read an array from a Google Stroage URL:
///
/// >>> a = vortex.io.read_url("gs://bucket/path/to/dataset.vortex") # doctest: +SKIP
///
/// Read an array from a local file URL:
///
/// >>> a = vortex.io.read_url("file:/path/to/dataset.vortex") # doctest: +SKIP
///
#[pyfunction]
#[pyo3(signature = (url, *, projection = None, row_filter = None, indices = None))]
pub fn read_url(
url: Bound<PyString>,
projection: Option<Vec<Bound<PyAny>>>,
row_filter: Option<&Bound<PyExpr>>,
indices: Option<&PyArray>,
) -> PyResult<PyArray> {
let dataset = TOKIO_RUNTIME.block_on(ObjectStoreUrlDataset::try_new(url.extract()?))?;
dataset.to_array(projection, row_filter, indices)
}
/// Write a vortex struct array to the local filesystem.
///
/// Parameters
/// ----------
/// array : :class:`~vortex.encoding.Array`
/// The array. Must be an array of structures.
///
/// f : :class:`str`
/// The file path.
///
/// compress : :class:`bool`
/// Compress the array before writing, defaults to ``True``.
///
/// Examples
/// --------
///
/// Write the array `a` to the local file `a.vortex`.
///
/// >>> a = vortex.array([
/// ... {'x': 1},
/// ... {'x': 2},
/// ... {'x': 10},
/// ... {'x': 11},
/// ... {'x': None},
/// ... ])
/// >>> vortex.io.write_path(a, "a.vortex")
///
#[pyfunction]
#[pyo3(signature = (array, f, *, compress=true))]
pub fn write_path(
array: &Bound<'_, PyArray>,
f: &Bound<'_, PyString>,
compress: bool,
) -> PyResult<()> {
async fn run(array: &ArrayData, fname: &str) -> PyResult<()> {
let file = File::create(Path::new(fname)).await?;
let mut writer = VortexFileWriter::new(file);
writer = writer.write_array_columns(array.clone()).await?;
writer.finalize().await?;
Ok(())
}
let fname = f.to_str()?; // TODO(dk): support file objects
let mut array = array.borrow().unwrap().clone();
if compress {
let compressor = SamplingCompressor::default();
array = compressor.compress(&array, None)?.into_array();
}
TOKIO_RUNTIME.block_on(run(&array, fname))
}